Reducing the Dimensionality of Data: Locally Linear Embedding of Sloan Galaxy Spectra

نویسندگان

  • Jake Vanderplas
  • Andrew Connolly
چکیده

We introduce Locally Linear Embedding (LLE) to the astronomical community as a new classification technique, using SDSS spectra as an example data set. LLE is a nonlinear dimensionality reduction technique which has been studied in the context of computer perception. We compare the performance of LLE to wellknown spectral classification techniques, e.g. principal component analysis and line-ratio diagnostics. We find that LLE combines the strengths of both methods in a single, coherent technique, and leads to improved classification of emissionline spectra at a relatively small computational cost. We also present a data subsampling technique that preserves local information content, and proves effective for creating small, efficient training samples from a large, high-dimensional data sets. Software used in this LLE-based classification is made available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational AstroStatistics: Fast and Efficient Tools for Analysing Huge Astronomical Data Sources

I present here a review of past and present multi–disciplinary research of the Pittsburgh Computational AstroStatistics (PiCA) group. This group is dedicated to developing fast and efficient statistical algorithms for analysing huge astronomical data sources. I begin with a short review of multi–resolutional kd-trees which are the building blocks for many of our algorithms. For example, quick r...

متن کامل

Nonlinear Dimensionality Reduction – Locally Linear Embedding versus Isomap

Real data of natural and social sciences is often very high-dimensional. However, the underlying structure can in many cases be described by a small number of features. Recently two new nonlinear methods for reducing the dimensionality of such data, Locally Linear Embedding and Isomap, have been suggested and successfully applied. This report compares both algorithms by means of several synthet...

متن کامل

Clustering on High Dimensional data Using Locally Linear Embedding (LLE) Techniques

Clustering is the task of grouping a set of objects in such a way that objects in the same group (called cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). The dimension can be reduced by using some techniques of dimension reduction. Recently new non linear methods introduced for reducing the dimensionality of such data called Locally Li...

متن کامل

Locally Linear Embedded Eigenspace Analysis

The existing nonlinear local methods for dimensionality reduction yield impressive results in data embedding and manifold visualization. However, they also open up the problem of how to define a unified projection from new data to the embedded subspace constructed by the training samples. Thinking globally and fitting locally, we present a new linear embedding approach, called Locally Embedded ...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009